
The Basics Every Coder Needs to Know

Dan Wilcox
Visiting Teaching Assistant Professor

Emergent Digital Practices

Winter 2016

class.danomatika.com

http://class.danomatika.com

Hypothetical Situation 1

Middle of the night, you’re working on a
software project (let’s say Processing), &
you have something basically working…

… but you need to add 1 more thing.

Everything is broken & you don’t
remember what you changed.

It’s going to take forever to get it
working again.

Hypothetical Situation 2

This time, you make a copy of the
project every time you have it working &
before you add too many changes.

Now, you can easily go back to a working
version or branch out and try multiple
ideas from the same version. Great…

… except now you start to have lots of
copies of the same project.

And combining code between different
versions is a huge pain.

Hypothetical Situation 3

You’re working on a collaborative
project with a friend.

He’s working on one part of the project
and you’re working on the other.

You end up spending more time
emailing copies of the code back and
forth than writing new code.

Also, neither of you can figure out which
exact version the other is running.

Not to mention
conflicts.

It’s a nightmare!

There has to be a better way!

Let the computer keep track of changes
and versions.

This is called source control.

There are a number of tools out there
which do this, one of them is…

Open Source

Distributed Source Control Management

Originally written for the Linux Kernel

Command line tool & graphical front
ends (gitk, Github Desktop, etc)

Source Control

aka

Keeping track of
changes & versions

Optimized for source files (text)

Not good for large binary files like video
and high resolution images

Has a funny name (kind of like “get”,
British slang, etc)

This is probably your current workflow…

Basic Git workflow:
• make changes
• add new and/or modified files
• remove files you don’t want
• commit changes (aka save)

Work in your project folder and git
remembers the changes for you.

A git-managed project is a repository.

“repo” for short

This is just a fancy name for a folder you
told git to keep track of.

git only keeps track of things you add

Changes can be seen via highlighting
differences been old & new versions:

- this was the original text on this line
+ it has now been replaced by this

git keeps track of these differences and
can undo/redo them for you.

Each commit has a unique identifier and
you can return one at any time.

It’s like a “save point” & you can add a
message reminding you what you did:
commit 84d743774e039e8197f7f10e467857763eb4494a
Author: danomatika <danomatika@gmail.com>
Date: Mon Jan 18 12:27:37 2016 -0700

 fixed bug a, fixed bug b, & added feature 4 (woohaa)

You can also name specific commits so
it’s easier to find them again.

This is called tagging the commit.

Software projects generally tag versions
aka 0.2.0, 0.3.1, 1.0.2, etc but you can
name them whatever you want.

You can isolate ideas & work from the
main “working code” using branching.

Every git repo has a master branch by
default and you can create a new branch
off of any commit at any time.

You can then make multiple commits in
the branch until you finish something,
then merge the changes back into the
master branch.

This means you can easily try out ideas
without hosing your master branch.

aka

CREATIVE FREEDOM

Distributed: not centralized

Work locally on your computer, then…

push changes to another location
 or
pull changes from another location

You can get a copy of a remote repo if
you know it’s location or web address.

This is called cloning a repo.

Once cloned, you then pull in any new
changes and push your changes.
(If you have permission, that is!)

This allows multiple people to share
code through remote locations…

A remote location can be:
• another folder
• another computer
• a web server
• or an online service…

GitHub uses git, but did not create it
(no matter what the hype says)

You can also use git without GitHub

GitHub is basically a web service which
provides a place to store git repositories.

It has a number of social features which
make it easy to collaborate on a project
with other people, many of whom you
may not ever meet in person.

You can set up an account for free and
create an unlimited number of public
repositories at no charge.

Private repos, on the other hand, will
cost you money.

Most repos are public.

Public repo example: Processing

Features:
• source code
• issues (aka bugs, etc)
• wiki
• commit, tag, & branch views

https://github.com/processing/processing

Most useful feature: the pull request

Basically, you can make your own copy
of a public repo on GitHub into your user
account. This is called a fork.

Do you own work, then submit it back to
original repo via a pull request.

Do you own work, then submit it back to
original repo via a pull request.

The pull request allows people outside
of the main repository developers to
submit changes.

Thus, the PR enables social
collaboration without the direct need for
permission or experience.

Anyone can help open source projects.

For instance, found a typo in the
Processing docs?

You could fork the repo, make a change,
and submit the fix back to the main
repo: Processing docs

https://github.com/processing/processing-docs

And, of course, you can share your own
code and experience as well as work on
a collaborative project with your friends.

With anything, there is a learning curve.

git was developed by software engineers

The basic concepts are simple, but the
details can become overwhelming if
something isn’t working right.

Merge conflicts are one of the harder
things to get a hang of when starting.  
 
A conflict happens when two different
commits change the same line(s) of text
and cannot be automatically merged
together.

You basically have to go in and manually
fix those lines. It’s not hard but it can be
scary the first time. GUI tools help here.

You are not alone!
Due to it’s popularity, there is lots of info
online: tutorials, FAQS, forums, etc

A few resources:

• git - the simple guide
• Try Git - Code School Tutorial
• Intro to git & the command line
• git Documentation

http://rogerdudler.github.io/git-guide/
https://www.codeschool.com/courses/try-git
https://sklise.com/2012/09/22/introduction-to-git/
https://git-scm.com/doc

Graphical Front Ends

You don’t have to work on the command
line if you don’t want to.

There are a number of graphical
wrappers for git: Git SCM GUIS

https://git-scm.com/downloads/guis

GitHub Desktop is a good choice.

It also works with non-GH repositories.

https://desktop.github.com

The PROS outweigh the CONS

The freedom to experiment & work
collaboratively will open doors. You’ll be
very happy when you know you have a
backup every time you make a commit.

… especially in the middle of the night.

