
Preface

We created Processing to make
programming interactive graphics easier.
We were frustrated with how difficult it
was to write this type of software with the
programming languages we usually used
(Java and C++), and were inspired by
how simple it was to write interesting pro-
grams with the languages of our
childhood (Logo and BASIC). We were
most influenced by Design By Numbers
(DBN), a language we were maintaining
and teaching at the time (and which was
created by our research advisor,
John Maeda).
Processing was born in spring 2001 as a brainstorming session
on a sheet of paper. Our goal was to make a way to sketch (pro-
totype) the type of software we were working on, which was
almost always full-screen and interactive. We were searching for
a better way to test our ideas easily in code, rather than just
talking about them or spending too much time programming
them in C++. Our other goal was to make a language for teach-
ing design and art students how to program and to give more
technical students an easier way to work with graphics. The
combination is a positive departure from the way programming
is usually taught. We begin by focusing on graphics and interac-
tion rather than on data structures and text console output.

xi

Processing experienced a long childhood; it was alpha software
from August 2002 to April 2005 and then public beta software
until November 2008. During this time, it was used continuously
in classrooms and by thousands of people around the world.
The language, software environment, and curricula around the
project were revised continuously during this time. Many of our
original decisions about the language were reinforced and many
were changed. We developed a system of software extensions,
called libraries, that have allowed people to expand Processing
into many unforeseen and amazing directions. (There are now
over 100 libraries.)

In fall 2008, we launched the 1.0 version of the software. After
seven years of work, the 1.0 launch signified stability for the lan-
guage. We launched the 2.0 release in spring 2013 to make the
software faster. The 2.0 releases introduced better OpenGL
integration, GLSL shaders, and faster video playback with
GStreamer. The 3.0 releases in 2015 make programming in Pro-
cessing easier with a new interface and error checking while
programming.

Now, fourteen years after its origin, Processing has grown
beyond its original goals, and we’ve learned how it can be useful
in other contexts. Accordingly, this book is written for a new
audience—casual programmers, hobbyists, and anyone who
wants to explore what Processing can do without getting lost in
the details of a huge textbook. We hope you’ll have fun and be
inspired to continue programming. This book is just the start.

While we (Casey and Ben) have been guiding the Processing
ship through the waters for the last twelve years, we can’t over-
state that Processing is a community effort. From writing libra-
ries that extend the software to posting code online and helping
others learn, the community of people who use Processing has
pushed it far beyond its initial conception. Without this group
effort, Processing would not be what it is today.

xii Preface

How This Book Is Organized
The chapters in this book are organized as follows:

• Chapter 1: Learn about Processing.

• Chapter 2: Create your first Processing program.

• Chapter 3: Define and draw simple shapes.

• Chapter 4: Store, modify, and reuse data.

• Chapter 5: Control and influence programs with the mouse
and the keyboard.

• Chapter 6: Transform the coordinates.

• Chapter 7: Load and display media including images, fonts,
and vector files.

• Chapter 8: Move and choreograph shapes.

• Chapter 9: Build new code modules.

• Chapter 10: Create code modules that combine variables
and functions.

• Chapter 11: Simplify working with lists of variables.

• Chapter 12: Load and visualize data.

• Chapter 13: Learn about 3D, PDF export, computer vision,
and reading data from an Arduino board.

Who This Book Is For
This book is written for people who want a casual and concise
introduction to computer programming, who want to create
images and simple interactive programs. It’s for people who
want a jump-start on understanding the thousands of free Pro-
cessing code examples and reference materials available online.
Getting Started with Processing is not a programming textbook;
as the title suggests, it will get you started. It’s for teenagers,
hobbyists, grandparents, and everyone in between.

This book is also appropriate for people with programming
experience who want to learn the basics of interactive computer
graphics. Getting Started with Processing contains techniques

Preface xiii

that can be applied to creating games, animation, and
interfaces.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and
file extensions.

Constant width
Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables, state-
ments, and keywords.

Constant width italic
Shows text that should be replaced with user-supplied val-
ues or by values determined by context.

This element signifies a tip, suggestion, or general
note.

This element indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you
may use the code in this book in your programs and documen-
tation. You do not need to contact us for permission unless
you’re reproducing a significant portion of the code. For exam-
ple, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing a
CD-ROM of examples from Make: books does require permis-
sion. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a sig-

xiv Preface

nificant amount of example code from this book into your pro-
duct’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For exam-
ple: “Getting Started with Processing by Casey Reas and Ben
Fry. Copyright 2015 Casey Reas and Ben Fry,
978-1-457-18708-7.”

If you feel your use of code examples falls outside fair use or the
permission given here, feel free to contact us at bookpermis-
sions@makermedia.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers
expert content in both book and video form from the world’s
leading authors in technology and business.

Technology professionals, software developers, web designers,
and business and creative professionals use Safari Books Online
as their primary resource for research, problem solving, learn-
ing, and certification training.

Safari Books Online offers a range of plans and pricing for enter-
prise, government, education, and individuals.

Members have access to thousands of books, training videos,
and prepublication manuscripts in one fully searchable data-
base from publishers like Maker Media, O’Reilly Media, Prentice
Hall Professional, Addison-Wesley Professional, Microsoft Press,
Sams, Que, Peachpit Press, Focal Press, Cisco Press, John Wiley
& Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt,
Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-
Hill, Jones & Bartlett, Course Technology, and hundreds more.
For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book
to the publisher:

Preface xv

mailto:bookpermissions@makermedia.com
mailto:bookpermissions@makermedia.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/

Maker Media, Inc.
1160 Battery Street East, Suite 125
San Francisco, California 94111
800-998-9938 (in the United States or Canada)
http://makermedia.com/contact-us/

Make: unites, inspires, informs, and entertains a growing com-
munity of resourceful people who undertake amazing projects in
their backyards, basements, and garages. Make: celebrates your
right to tweak, hack, and bend any technology to your will. The
Make: audience continues to be a growing culture and commu-
nity that believes in bettering ourselves, our environment, our
educational system—our entire world. This is much more than
an audience, it’s a worldwide movement that Make: is leading—
we call it the Maker Movement.

For more information about Make:, visit us online:

Make: magazine: http://makezine.com/magazine/
Maker Faire: http://makerfaire.com
Makezine.com: http://makezine.com
Maker Shed: http://makershed.com/

We have a web page for this book, where we list errata, exam-
ples, and any additional information. You can access this page
at: http://shop.oreilly.com/product/0636920031406.do

To comment or ask technical questions about this book, send
email to bookquestions@oreilly.com.

Acknowledgments
For the first and second editions of this book, we thank Brian
Jepson for his great energy, support, and insight. For the first
edition, Nancy Kotary, Rachel Monaghan, and Sumita Mukherji
gracefully carried the book to the finish line. Tom Sgouros made
a thorough edit of the book and David Humphrey provided an
insightful technical review.

We can’t imagine this book without Massimo Banzi’s Getting
Started with Arduino (Maker Media). Massimo’s excellent book
is the prototype.

xvi Preface

http://makezine.com/magazine/
http://makerfaire.com
http://makezine.com
http://makershed.com/
http://shop.oreilly.com/product/0636920031406.do
mailto:bookquestions@oreilly.com

A small group of individuals has, for years, contributed essential
time and energy to Processing. Dan Shiffman is our partner in
the Processing Foundation, the 501(c)(3) organization that sup-
ports the Processing software. Much of the core code for Pro-
cessing 2.0 and 3.0 has come from the sharp minds of Andres
Colubri and Manindra Moharana. Scott Murray, Jamie Kosoy,
and Jon Gacnik have built a wonderful web infrastructure for the
project. James Grady is rocking the 3.0 user interface. We thank
Florian Jenett for his years of diverse work on the project includ-
ing the forums, website, and design. Elie Zananiri and Andreas
Schlegel have created the infrastructure for building and docu-
menting contributed libraries and have spent countless hours
curating the lists. Many others have contributed significantly to
the project; the precise data is available at https://github.com/
processing.

The Processing 1.0 release was supported by Miami University
and Oblong Industries. The Armstrong Institute for Interactive
Media Studies at Miami University funded the Oxford Project, a
series of Processing development workshops. These workshops
were made possible through the hard work of Ira Greenberg.
These four-day meetings in Oxford, Ohio, and Pittsburgh, Penn-
sylvania, enabled the November 2008 launch of Processing 1.0.
Oblong Industries funded Ben Fry to develop Processing during
summer 2008; this was essential to the release.

The Processing 2.0 release was facilitated by a development
workshop sponsored by New York University’s Interactive Tele-
communication Program. The work on Processing 3.0 was gen-
erously sponsored by the Emergent Digital Practices program at
the University of Denver. We thank Christopher Colemen and
Laleh Mehran for the essential support.

This book grew out of teaching with Processing at UCLA. Chan-
dler McWilliams has been instrumental in defining these
classes. Casey thanks the undergraduate students in the
Department of Design Media Arts at UCLA for their energy and
enthusiasm. His teaching assistants have been great collabora-
tors in defining how Processing is taught. Hats off to Tatsuya
Saito, John Houck, Tyler Adams, Aaron Siegel, Casey Alt,
Andres Colubri, Michael Kontopoulos, David Elliot, Christo Alle-
gra, Pete Hawkes, and Lauren McCarthy.

Preface xvii

https://github.com/processing
https://github.com/processing

Through founding the Aesthetics and Computation Group
(1996–2002) at the MIT Media Lab, John Maeda made all of this
possible.

xviii Preface

1/Hello

Processing is for writing software to make
images, animations, and interactions.
The idea is to write a single line of code,
and have a circle show up on the screen.
Add a few more lines of code, and the cir-
cle follows the mouse. Another line of
code, and the circle changes color when
the mouse is pressed. We call this
sketching with code. You write one line,
then add another, then another, and so
on. The result is a program created one
piece at a time.
Programming courses typically focus on structure and theory
first. Anything visual—an interface, an animation—is considered
a dessert to be enjoyed only after finishing your vegetables, usu-
ally several weeks of studying algorithms and methods. Over the
years, we’ve watched many friends try to take such courses and
drop out after the first lecture or after a long, frustrating night
before the first assignment deadline. What initial curiosity they
had about making the computer work for them was lost
because they couldn’t see a path from what they had to learn
first to what they wanted to create.

Processing offers a way to learn programming through creating
interactive graphics. There are many possible ways to teach
coding, but students often find encouragement and motivation
in immediate visual feedback. Processing’s capacity for provid-
ing that feedback has made it a popular way to approach pro-

1

gramming, and its emphasis on images, sketching, and commu-
nity is discussed in the next few pages.

Sketching and Prototyping
Sketching is a way of thinking; it’s playful and quick. The basic
goal is to explore many ideas in a short amount of time. In our
own work, we usually start by sketching on paper and then mov-
ing the results into code. Ideas for animation and interactions
are usually sketched as storyboards with notations. After mak-
ing some software sketches, the best ideas are selected and
combined into prototypes (Figure 1-1). It’s a cyclical process of
making, testing, and improving that moves back and forth
between paper and screen.

Figure 1-1. As drawings move from sketchbook to screen, new
possibilities emerge

Flexibility
Like a software utility belt, Processing consists of many tools
that work together in different combinations. As a result, it can

2 Getting Started with Processing

be used for quick hacks or for in-depth research. Because a Pro-
cessing program can be as short as one line or as long as thou-
sands, there’s room for growth and variation. More than 100
libraries extend Processing even further into domains including
sound, computer vision, and digital fabrication (Figure 1-2).

Figure 1-2. Many types of information can flow in and out of
Processing

Giants
People have been making pictures with computers since the
1960s, and there’s much to be learned from this history. For
example, before computers could display to CRT or LCD
screens, huge plotter machines (Figure 1-3) were used to draw
images. In life, we all stand on the shoulders of giants, and the
titans for Processing include thinkers from design, computer
graphics, art, architecture, statistics, and the spaces between.
Have a look at Ivan Sutherland’s Sketchpad (1963), Alan Kay’s
Dynabook (1968), and the many artists featured in Ruth Leav-
itt’s Artist and Computer (Harmony Books, 1976). The ACM SIG-

Hello 3

http://www.atariarchives.org/artist/

GRAPH and Ars Electronica archives provide fascinating glimp-
ses into the history of graphics and software.

Figure 1-3. Drawing demonstration by Manfred Mohr at Musée
d’Art Moderne de la Ville de Paris using the Benson plotter and a
digital computer on May 11, 1971. (photo by Rainer Mürle, cour-
tesy bitforms gallery, New York)

Family Tree
Like human languages, programming languages belong to fami-
lies of related languages. Processing is a dialect of a program-
ming language called Java; the language syntax is almost identi-
cal, but Processing adds custom features related to graphics
and interaction (Figure 1-4). The graphic elements of Processing
are related to PostScript (a foundation of PDF) and OpenGL (a
3D graphics specification). Because of these shared features,
learning Processing is an entry-level step to programming in
other languages and using different software tools.

4 Getting Started with Processing

Figure 1-4. Processing has a large family of related languages
and programming environments

Join In
Thousands of people use Processing every day. Like them, you
can download Processing without cost. You even have the
option to modify the Processing code to suit your needs. Pro-
cessing is a FLOSS project (that is, free/libre/open source soft-
ware), and in the spirit of community, we encourage you to par-
ticipate by sharing your projects and knowledge online at Pro-
cessing.org and at the many social networking sites that host
Processing content. These sites are linked from the Process-
ing.org website.

Hello 5

http://processing.org
http://processing.org

2/Starting to Code

To get the most out of this book, you
need to do more than just read the
words. You need to experiment and prac-
tice. You can’t learn to code just by read-
ing about it—you need to do it. To get
started, download Processing and make
your first sketch.
Start by visiting http://processing.org/download and selecting
the Mac, Windows, or Linux version, depending on what
machine you have. Installation on each machine is straightfor-
ward:

• On Windows, you’ll have a .zip file. Double-click it, and drag
the folder inside to a location on your hard disk. It could be
Program Files or simply the desktop, but the important
thing is for the processing folder to be pulled out of that .zip
file. Then double-click processing.exe to start.

• The Mac OS X version is a .zip file. Double-click it, and drag
the Processing icon to the Applications folder. If you’re
using someone else’s machine and can’t modify the Appli-
cations folder, just drag the application to the desktop. Then
double-click the Processing icon to start.

• The Linux version is a .tar.gz file, which should be familiar to
most Linux users. Download the file to your home directory,
then open a terminal window, and type:

tar xvfz processing-xxxx.tgz

(Replace xxxx with the rest of the file’s name, which is the ver-
sion number.) This will create a folder named processing-3.0 or
something similar. Then change to that directory:

7

http://processing.org/download

cd processing-xxxx

and run it:

./processing

With any luck, the main Processing window will now be visible
(Figure 2-1). Everyone’s setup is different, so if the program
didn’t start, or you’re otherwise stuck, visit the troubleshooting
page for possible solutions.

Figure 2-1. The Processing Development Environment

Your First Program
You’re now running the Processing Development Environment
(or PDE). There’s not much to it; the large area is the Text Editor,
and there’s two buttons across the top; this is the Toolbar.
Below the editor is the Message Area, and below that is the Con-
sole. The Message Area is used for one-line messages, and the
Console is used for more technical details.

8 Getting Started with Processing

http://bit.ly/process-wiki
http://bit.ly/process-wiki

Example 2-1: Draw an Ellipse
In the editor, type the following:

ellipse(50, 50, 80, 80);

This line of code means “draw an ellipse, with the center 50 pix-
els over from the left and 50 pixels down from the top, with a
width and height of 80 pixels.” Click the Run button the (triangle
button in the Toolbar).

If you’ve typed everything correctly, you’ll see a circle on your
screen. If you didn’t type it correctly, the Message Area will turn
red and complain about an error. If this happens, make sure that
you’ve copied the example code exactly: the numbers should be
contained within parentheses and have commas between each
of them, and the line should end with a semicolon.

One of the most difficult things about getting started with pro-
gramming is that you have to be very specific about the syntax.
The Processing software isn’t always smart enough to know
what you mean, and can be quite fussy about the placement of
punctuation. You’ll get used to it with a little practice.

Next, we’ll skip ahead to a sketch that’s a little more exciting.

Example 2-2: Make Circles
Delete the text from the last example, and try this one:

void setup() {
 size(480, 120);
}

void draw() {
 if (mousePressed) {
 fill(0);
 } else {

Starting to Code 9

 fill(255);
 }
 ellipse(mouseX, mouseY, 80, 80);
}

This program creates a window that is 480 pixels wide and 120
pixels high, and then starts drawing white circles at the position
of the mouse. When a mouse button is pressed, the circle color
changes to black. We’ll explain more about this program later.
For now, run the code, move the mouse, and click to see what it
does. While the sketch is running, the Run button will change to
a square “stop” icon, which you can click to halt the sketch.

Show
If you don’t want to use the buttons, you can always use the
Sketch menu, which reveals the shortcut Ctrl-R (or Cmd-R on
the Mac) for Run. The Present option clears the rest of the
screen when the program is run to present the sketch all by
itself. You can also use Present from the Toolbar by holding
down the Shift key as you click the Run button. See Figure 2-2.

Figure 2-2. A Processing sketch is displayed on screen with Run
and Present. The Present option clears the entire screen before
running the code for a cleaner presentation.

10 Getting Started with Processing

Save and New
The next command that’s important is Save. You can find it
under the File menu. By default, your programs are saved to the
“sketchbook,” which is a folder that collects your programs for
easy access. Select the Sketchbook option in the File menu to
bring up a list of all the sketches in your sketchbook.

It’s always a good idea to save your sketches often. As you try
different things, keep saving with different names, so that you
can always go back to an earlier version. This is especially help-
ful if—no, when—something breaks. You can also see where the
sketch is located on your computer with the Show Sketch Folder
command under the Sketch menu.

You can create a new sketch by selecting the New option from
the File menu. This will create a new sketch in its own window.

Share
Processing sketches are made to be shared. The Export Appli-
cation option in the File menu will bundle your code into a single
folder. Export Application creates an application for your choice
of Mac, Windows, and/or Linux. This is an easy way to make
self-contained, double-clickable versions of your projects that
can run full screen or in a window.

The application folders are erased and re-created
each time you use the Export Application command,
so be sure to move the folder elsewhere if you do not
want it to be erased with the next export.

Examples and Reference
Learning how to program involves exploring lots of code: run-
ning, altering, breaking, and enhancing it until you have resha-
ped it into something new. With this in mind, the Processing
software download includes dozens of examples that demon-
strate different features of the software.

Starting to Code 11

To open an example, select Examples from the File menu and
double-click an example’s name to open it. The examples are
grouped into categories based on their function, such as Form,
Motion, and Image. Find an interesting topic in the list and try an
example.

All of the examples in this book can be downloaded
and run from the Processing Development Environ-
ment. Open the examples through the File menu,
then click Add Examples to open the list of example
packages available to download. Select the Getting
Started with Processing package and click Install to
download.

When looking at code in the editor, you’ll see that functions like
ellipse() and fill() have a different color from the rest of the
text. If you see a function that you’re unfamiliar with, select the
text, and then click “Find in Reference” from the Help menu. You
can also right-click the text (or Ctrl-click on a Mac) and choose
“Find in Reference” from the menu that appears. This will open
a web browser and show the reference for that function. In addi-
tion, you can view the full documentation for the software by
selecting Reference from the Help menu.

The Processing Reference explains every code element with a
description and examples. The Reference programs are much
shorter (usually four or five lines) and easier to follow than the
longer code found in the Examples folder. We recommend keep-
ing the Reference open while you’re reading this book and while
you’re programming. It can be navigated by topic or alphabeti-
cally; sometimes it’s fastest to do a text search within your
browser window.

The Reference was written with the beginner in mind; we hope
that we’ve made it clear and understandable. We’re grateful to
the many people who’ve spotted errors over the years and
reported them. If you think you can improve a reference entry or
you find a mistake, please let us know by clicking the link at the
top of each reference page.

12 Getting Started with Processing

3/Draw

At first, drawing on a computer screen is
like working on graph paper. It starts as a
careful technical procedure, but as new
concepts are introduced, drawing simple
shapes with software expands into
animation and interaction. Before we
make this jump, we need to start at the
beginning.
A computer screen is a grid of light elements called pixels. Each
pixel has a position within the grid defined by coordinates. In
Processing, the x coordinate is the distance from the left edge of
the Display Window and the y coordinate is the distance from
the top edge. We write coordinates of a pixel like this: (x, y). So,
if the screen is 200×200 pixels, the upper-left is (0, 0), the cen-
ter is at (100, 100), and the lower-right is (199, 199). These num-
bers may seem confusing; why do we go from 0 to 199 instead
of 1 to 200? The answer is that in code, we usually count from 0
because it’s easier for calculations that we’ll get into later.

The Display Window
The Display Window is created and images are drawn inside
through code elements called functions. Functions are the basic
building blocks of a Processing program. The behavior of a func-
tion is defined by its parameters. For example, almost every Pro-
cessing program has a size() function to set the width and
height of the Display Window. (If your program doesn’t have a
size() function, the dimension is set to 100×100 pixels.)

13

Example 3-1: Draw a Window
The size() function has two parameters: the first sets the width
of the window and the second sets the height. To draw a window
that is 800 pixels wide and 600 high, type:

size(800, 600);

Run this line of code to see the result. Put in different values to
see what’s possible. Try very small numbers and numbers larger
than your screen.

Example 3-2: Draw a Point
To set the color of a single pixel within the Display Window, we
use the point() function. It has two parameters that define a
position: the x coordinate followed by the y coordinate. To draw
a little window and a point at the center of the screen, coordi-
nate (240, 60), type:

size(480, 120);
point(240, 60);

Try to write a program that puts a point at each corner of the
Display Window and one in the center. Try placing points side by
side to make horizontal, vertical, and diagonal lines.

Basic Shapes
Processing includes a group of functions to draw basic shapes
(see Figure 3-1). Simple shapes like lines can be combined to
create more complex forms like a leaf or a face.

To draw a single line, we need four parameters: two for the start-
ing location and two for the end.

14 Getting Started with Processing

Figure 3-1. Shapes and their coordinates

Draw 15

Example 3-3: Draw a Line
To draw a line between coordinate (20, 50) and (420, 110), try:

size(480, 120);
line(20, 50, 420, 110);

Example 3-4: Draw Basic Shapes
Following this pattern, a triangle needs six parameters and a
quadrilateral needs eight (one pair for each point):

size(480, 120);
quad(158, 55, 199, 14, 392, 66, 351, 107);
triangle(347, 54, 392, 9, 392, 66);
triangle(158, 55, 290, 91, 290, 112);

Example 3-5: Draw a Rectangle
Rectangles and ellipses are both defined with four parameters:
the first and second are for the x and y coordinates of the
anchor point, the third for the width, and the fourth for the
height. To make a rectangle at coordinate (180, 60) with a width
of 220 pixels and height of 40, use the rect() function like this:

16 Getting Started with Processing

size(480, 120);
rect(180, 60, 220, 40);

Example 3-6: Draw an Ellipse
The x and y coordinates for a rectangle are the upper-left corner,
but for an ellipse they are the center of the shape. In this exam-
ple, notice that the y coordinate for the first ellipse is outside the
window. Objects can be drawn partially (or entirely) out of the
window without an error:

size(480, 120);
ellipse(278, -100, 400, 400);
ellipse(120, 100, 110, 110);
ellipse(412, 60, 18, 18);

Processing doesn’t have separate functions to make squares
and circles. To make these shapes, use the same value for the
width and the height parameters to ellipse() and rect().

Draw 17

Example 3-7: Draw Part of an Ellipse
The arc() function draws a piece of an ellipse:

size(480, 120);
arc(90, 60, 80, 80, 0, HALF_PI);
arc(190, 60, 80, 80, 0, PI+HALF_PI);
arc(290, 60, 80, 80, PI, TWO_PI+HALF_PI);
arc(390, 60, 80, 80, QUARTER_PI, PI+QUARTER_PI);

The first and second parameters set the location, the third and
fourth set the width and height. The fifth parameter sets the
angle to start the arc, and the sixth sets the angle to stop. The
angles are set in radians, rather than degrees. Radians are angle
measurements based on the value of pi (3.14159). Figure 3-2
shows how the two relate. As featured in this example, four
radian values are used so frequently that special names for
them were added as a part of Processing. The values PI, QUAR
TER_PI, HALF_PI, and TWO_PI can be used to replace the radian
values for 180°, 45°, 90°, and 360°.

18 Getting Started with Processing

Figure 3-2. Radians and degrees are two ways to measure an
angle. Degrees move around the circle from 0 to 360, while radi-
ans measure the angles in relation to pi, from 0 to approximately
6.28.

Example 3-8: Draw with Degrees
If you prefer to use degree measurements, you can convert to
radians with the radians() function. This function takes an
angle in degrees and changes it to the corresponding radian
value. The following example is the same as Example 3-7 on
page 18, but it uses the radians() function to define the start
and stop values in degrees:

size(480, 120);
arc(90, 60, 80, 80, 0, radians(90));

Draw 19

arc(190, 60, 80, 80, 0, radians(270));
arc(290, 60, 80, 80, radians(180), radians(450));
arc(390, 60, 80, 80, radians(45), radians(225));

Drawing Order
When a program runs, the computer starts at the top and reads
each line of code until it reaches the last line and then stops. If
you want a shape to be drawn on top of all other shapes, it
needs to follow the others in the code.

Example 3-9: Control Your Drawing
Order

size(480, 120);
ellipse(140, 0, 190, 190);
// The rectangle draws on top of the ellipse
// because it comes after in the code
rect(160, 30, 260, 20);

Example 3-10: Put It in Reverse
Modify by reversing the order of rect() and ellipse() to see the
circle on top of the rectangle:

size(480, 120);
rect(160, 30, 260, 20);
// The ellipse draws on top of the rectangle

20 Getting Started with Processing

// because it comes after in the code
ellipse(140, 0, 190, 190);

You can think of it like painting with a brush or making a collage.
The last element that you add is what’s visible on top.

Shape Properties
The most basic and useful shape properties are stroke weight,
the way the ends (caps) of lines are drawn, and how the corners
of shapes are displayed.

Example 3-11: Set Stroke Weight
The default stroke weight is a single pixel, but this can be
changed with the strokeWeight() function. The single parame-
ter to strokeWeight() sets the width of drawn lines:

size(480, 120);
ellipse(75, 60, 90, 90);
strokeWeight(8); // Stroke weight to 8 pixels
ellipse(175, 60, 90, 90);
ellipse(279, 60, 90, 90);
strokeWeight(20); // Stroke weight to 20 pixels
ellipse(389, 60, 90, 90);

Example 3-12: Set Stroke Caps
The strokeCap() function changes how lines are drawn at their
endpoints. By default, they have rounded ends:

Draw 21

size(480, 120);
strokeWeight(24);
line(60, 25, 130, 95);
strokeCap(SQUARE); // Square the line endings
line(160, 25, 230, 95);
strokeCap(PROJECT); // Project the line endings
line(260, 25, 330, 95);
strokeCap(ROUND); // Round the line endings
line(360, 25, 430, 95);

Example 3-13: Set Stroke Joins
The strokeJoin() function changes the way lines are joined
(how the corners look). By default, they have pointed (mitered)
corners:

size(480, 120);
strokeWeight(12);
rect(60, 25, 70, 70);
strokeJoin(ROUND); // Round the stroke corners
rect(160, 25, 70, 70);
strokeJoin(BEVEL); // Bevel the stroke corners
rect(260, 25, 70, 70);
strokeJoin(MITER); // Miter the stroke corners
rect(360, 25, 70, 70);

When any of these attributes are set, all shapes drawn afterward
are affected. For instance, in Example 3-11 on page 21, notice
how the second and third circles both have the same stroke
weight, even though the weight is set only once before both are
drawn.

Drawing Modes
A group of functions with “mode” in their name change how
Processing draws geometry to the screen. In this chapter, we’ll
look at ellipseMode() and rectMode(), which help us to draw

22 Getting Started with Processing

ellipses and rectangles, respectively; later in the book, we’ll
cover imageMode() and shapeMode().

Example 3-14: On the Corner
By default, the ellipse() function uses its first two parameters
as the x and y coordinate of the center and the third and fourth
parameters as the width and height. After ellipseMode(CORNER)
is run in a sketch, the first two parameters to ellipse() then
define the position of the upper-left corner of the rectangle the
ellipse is inscribed within. This makes the ellipse() function
behave more like rect() as seen in this example:

size(480, 120);
rect(120, 60, 80, 80);
ellipse(120, 60, 80, 80);
ellipseMode(CORNER);
rect(280, 20, 80, 80);
ellipse(280, 20, 80, 80);

You’ll find these “mode” functions in examples throughout the
book. There are more options for how to use them in the Pro-
cessing Reference.

Color
All the shapes so far have been filled white with black outlines,
and the background of the Display Window has been light gray.
To change them, use the background(), fill(), and stroke()
functions. The values of the parameters are in the range of 0 to
255, where 255 is white, 128 is medium gray, and 0 is black.
Figure 3-3 shows how the values from 0 to 255 map to different
gray levels.

Draw 23

Figure 3-3. Colors are created by defining RGB (red, green, blue)
values

24 Getting Started with Processing

Example 3-15: Paint with Grays
This example shows three different gray values on a black back-
ground:

size(480, 120);
background(0); // Black
fill(204); // Light gray
ellipse(132, 82, 200, 200); // Light gray circle
fill(153); // Medium gray
ellipse(228, -16, 200, 200); // Medium gray circle
fill(102); // Dark gray
ellipse(268, 118, 200, 200); // Dark gray circle

Example 3-16: Control Fill and Stroke
You can disable the stroke so that there’s no outline by using
noStroke(), and you can disable the fill of a shape with noFill():

size(480, 120);
fill(153); // Medium gray
ellipse(132, 82, 200, 200); // Gray circle
noFill(); // Turn off fill
ellipse(228, -16, 200, 200); // Outline circle
noStroke(); // Turn off stroke
ellipse(268, 118, 200, 200); // Doesn't draw!

Be careful not to disable the fill and stroke at the same time, as
we’ve done in the previous example, because nothing will draw
to the screen.

Draw 25

Example 3-17: Draw with Color
To move beyond grayscale values, you use three parameters to
specify the red, green, and blue components of a color.

Run the code in Processing to reveal the colors:

size(480, 120);
noStroke();
background(0, 26, 51); // Dark blue color
fill(255, 0, 0); // Red color
ellipse(132, 82, 200, 200); // Red circle
fill(0, 255, 0); // Green color
ellipse(228, -16, 200, 200); // Green circle
fill(0, 0, 255); // Blue color
ellipse(268, 118, 200, 200); // Blue circle

This is referred to as RGB color, which comes from how comput-
ers define colors on the screen. The three numbers stand for
the values of red, green, and blue, and they range from 0 to 255
the way that the gray values do. Using RGB color isn’t very intu-
itive, so to choose colors, use Tools→Color Selector, which
shows a color palette similar to those found in other software
(see Figure 3-4). Select a color, and then use the R, G, and B val-
ues as the parameters for your background(), fill(), or
stroke() function.

26 Getting Started with Processing

Figure 3-4. Processing Color Selector

Example 3-18: Set Transparency
By adding an optional fourth parameter to fill() or stroke(),
you can control the transparency. This fourth parameter is
known as the alpha value, and also uses the range 0 to 255 to
set the amount of transparency. The value 0 defines the color as
entirely transparent (it won’t display), the value 255 is entirely
opaque, and the values between these extremes cause the col-
ors to mix on screen:

size(480, 120);
noStroke();
background(204, 226, 225); // Light blue color
fill(255, 0, 0, 160); // Red color
ellipse(132, 82, 200, 200); // Red circle
fill(0, 255, 0, 160); // Green color
ellipse(228, -16, 200, 200); // Green circle

Draw 27

fill(0, 0, 255, 160); // Blue color
ellipse(268, 118, 200, 200); // Blue circle

Custom Shapes
You’re not limited to using these basic geometric shapes—you
can also define new shapes by connecting a series of points.

Example 3-19: Draw an Arrow
The beginShape() function signals the start of a new shape. The
vertex() function is used to define each pair of x and y coordi-
nates for the shape. Finally, endShape() is called to signal that
the shape is finished:

size(480, 120);
beginShape();
fill(153, 176, 180);
vertex(180, 82);
vertex(207, 36);
vertex(214, 63);
vertex(407, 11);
vertex(412, 30);
vertex(219, 82);
vertex(226, 109);
endShape();

Example 3-20: Close the Gap
When you run Example 3-19 on page 28, you’ll see the first and
last point are not connected. To do this, add the word CLOSE as a
parameter to endShape(), like this:

28 Getting Started with Processing

size(480, 120);
beginShape();
fill(153, 176, 180);
vertex(180, 82);
vertex(207, 36);
vertex(214, 63);
vertex(407, 11);
vertex(412, 30);
vertex(219, 82);
vertex(226, 109);
endShape(CLOSE);

Example 3-21: Create Some Creatures
The power of defining shapes with vertex() is the ability to
make shapes with complex outlines. Processing can draw thou-
sands and thousands of lines at a time to fill the screen with fan-
tastic shapes that spring from your imagination. A modest but
more complex example follows:

size(480, 120);

// Left creature
fill(153, 176, 180);
beginShape();
vertex(50, 120);
vertex(100, 90);
vertex(110, 60);
vertex(80, 20);
vertex(210, 60);

Draw 29

vertex(160, 80);
vertex(200, 90);
vertex(140, 100);
vertex(130, 120);
endShape();
fill(0);
ellipse(155, 60, 8, 8);

// Right creature
fill(176, 186, 163);
beginShape();
vertex(370, 120);
vertex(360, 90);
vertex(290, 80);
vertex(340, 70);
vertex(280, 50);
vertex(420, 10);
vertex(390, 50);
vertex(410, 90);
vertex(460, 120);
endShape();
fill(0);
ellipse(345, 50, 10, 10);

Comments
The examples in this chapter use double slashes (//) at the end
of a line to add comments to the code. Comments are parts of
the program that are ignored when the program is run. They are
useful for making notes for yourself that explain what’s happen-
ing in the code. If others are reading your code, comments are
especially important to help them understand your thought pro-
cess.

Comments are also especially useful for a number of different
options, such as when trying to choose the right color. So, for
instance, I might be trying to find just the right red for an ellipse:

size(200, 200);
fill(165, 57, 57);
ellipse(100, 100, 80, 80);

Now suppose I want to try a different red, but don’t want to lose
the old one. I can copy and paste the line, make a change, and
then “comment out” the old one:

30 Getting Started with Processing

size(200, 200);
//fill(165, 57, 57);
fill(144, 39, 39);
ellipse(100, 100, 80, 80);

Placing // at the beginning of the line temporarily disables it. Or
I can remove the // and place it in front of the other line if I want
to try it again:

size(200, 200);
fill(165, 57, 57);
//fill(144, 39, 39);
ellipse(100, 100, 80, 80);

As you work with Processing sketches, you’ll find yourself creat-
ing dozens of iterations of ideas; using comments to make notes
or to disable code can help you keep track of multiple options.

As a shortcut, you can also use Ctrl-/ (Cmd-/ on the
Mac) to add or remove comments from the current
line or a selected block of text. You can also com-
ment out many lines at a time with the alternative
comment notation introduced in “Comments” on
page 203.

Draw 31

Robot 1: Draw

This is P5, the Processing Robot. There are 10 different pro-
grams to draw and animate him in the book—each one explores
a different programming idea. P5’s design was inspired by Sput-
nik I (1957), Shakey from the Stanford Research Institute
(1966–1972), the fighter drone in David Lynch’s Dune (1984),
and HAL 9000 from 2001: A Space Odyssey (1968), among
other robot favorites.

The first robot program uses the drawing functions introduced
in this chapter. The parameters to the fill() and stroke() func-
tions set the gray values. The line(), ellipse(), and rect()
functions define the shapes that create the robot’s neck, anten-
nae, body, and head. To get more familiar with the functions, run
the program and change the values to redesign the robot:

size(720, 480);
strokeWeight(2);
background(0, 153, 204); // Blue background
ellipseMode(RADIUS);

// Neck
stroke(255); // Set stroke to white
line(266, 257, 266, 162); // Left

32 Getting Started with Processing

line(276, 257, 276, 162); // Middle
line(286, 257, 286, 162); // Right

// Antennae
line(276, 155, 246, 112); // Small
line(276, 155, 306, 56); // Tall
line(276, 155, 342, 170); // Medium

// Body
noStroke(); // Disable stroke
fill(255, 204, 0); // Set fill to orange
ellipse(264, 377, 33, 33); // Antigravity orb
fill(0); // Set fill to black
rect(219, 257, 90, 120); // Main body
fill(255, 204, 0); // Set fill to yellow
rect(219, 274, 90, 6); // Yellow stripe

// Head
fill(0); // Set fill to black
ellipse(276, 155, 45, 45); // Head
fill(255); // Set fill to white
ellipse(288, 150, 14, 14); // Large eye
fill(0); // Set fill to black
ellipse(288, 150, 3, 3); // Pupil
fill(153, 204, 255); // Set fill to light blue
ellipse(263, 148, 5, 5); // Small eye 1
ellipse(296, 130, 4, 4); // Small eye 2
ellipse(305, 162, 3, 3); // Small eye 3

Draw 33

