
4/Variables

A variable stores a value in memory so
that it can be used later in a program. The
variable can be used many times within a
single program, and the value is easily
changed while the program is running.

First Variables
One of the reasons we use variables is to avoid repeating our-
selves in the code. If you are typing the same number more than
once, consider using a variable instead so that your code is
more general and easier to update.

Example 4-1: Reuse the Same Values
For instance, when you make the y coordinate and diameter for
the three circles in this example into variables, the same values
are used for each ellipse:

size(480, 120);
int y = 60;
int d = 80;
ellipse(75, y, d, d); // Left
ellipse(175, y, d, d); // Middle
ellipse(275, y, d, d); // Right

35

Example 4-2: Change Values
Simply changing the y and d variables alters all three ellipses:

size(480, 120);
int y = 100;
int d = 130;
ellipse(75, y, d, d); // Left
ellipse(175, y, d, d); // Middle
ellipse(275, y, d, d); // Right

Without the variables, you’d need to change the y coordinate
used in the code three times and the diameter six times. When
comparing Example 4-1 on page 35 and Example 4-2 on page
36, notice how the bottom three lines are the same, and only the
middle two lines with the variables are different. Variables allow
you to separate the lines of the code that change from the lines
that don’t, which makes programs easier to modify. For
instance, if you place variables that control colors and sizes of
shapes in one place, then you can quickly explore different vis-
ual options by focusing on only a few lines of code.

Making Variables
When you make your own variables, you determine the name,
the data type, and the value. The name is what you decide to call
the variable. Choose a name that is informative about what the
variable stores, but be consistent and not too verbose. For
instance, the variable name “radius” will be clearer than “r”
when you look at the code later.

The range of values that can be stored within a variable is
defined by its data type. For instance, the integer data type can
store numbers without decimal places (whole numbers). In
code, integer is abbreviated to int. There are data types to store

36 Getting Started with Processing

each kind of data: integers, floating-point (decimal) numbers,
characters, words, images, fonts, and so on.

Variables must first be declared, which sets aside space in the
computer’s memory to store the information. When declaring a
variable, you also need to specify its data type (such as int),
which indicates what kind of information is being stored. After
the data type and name are set, a value can be assigned to the
variable:

int x; // Declare x as an int variable
x = 12; // Assign a value to x

This code does the same thing, but is shorter:

int x = 12; // Declare x as an int variable and assign a value

The name of the data type is included on the line of code that
declares a variable, but it’s not written again. Each time the data
type is written in front of the variable name, the computer thinks
you’re trying to declare a new variable. You can’t have two vari-
ables with the same name in the same part of the program
(Appendix D), so the program has an error:

int x; // Declare x as an int variable
int x = 12; // ERROR! Can't have two variables called x here

Each data type stores a different kind of data. For instance, an
int variable can store a whole number, but it can’t store a num-
ber with decimal points, called a float. The word “float” refers
to “floating point,” which describes the technique used to store
a number with decimal points in memory. (The specifics of that
technique aren’t important here.)

A floating-point number can’t be assigned to an int because
information would be lost. For instance, the value 12.2 is differ-
ent from its nearest int equivalent, the value 12. In code, this
operation will create an error:

int x = 12.2; // ERROR! A floating-point value can't fit in
an int

However, a float variable can store an integer. For instance, the
integer value 12 can be converted to the floating-point equiva-
lent 12.0 because no information is lost. This code works
without an error:

Variables 37

float x = 12; // Automatically converts 12 to 12.0

Data types are discussed in more detail in Appendix B.

Processing Variables
Processing has a series of special variables to store information
about the program while it runs. For instance, the width and
height of the window are stored in variables called width and
height. These values are set by the size() function. They can be
used to draw elements relative to the size of the window, even if
the size() line changes.

Example 4-3: Adjust the Size, See
What Follows
In this example, change the parameters to size() to see how it
works:

size(480, 120);
line(0, 0, width, height); // Line from (0,0) to (480, 120)
line(width, 0, 0, height); // Line from (480, 0) to (0, 120)
ellipse(width/2, height/2, 60, 60);

Other special variables keep track of the status of the mouse
and keyboard values and much more. These are discussed in
Chapter 5.

A Little Math
People often assume that math and programming are the same
thing. Although knowledge of math can be useful for certain
types of coding, basic arithmetic covers the most important
parts.

38 Getting Started with Processing

Example 4-4: Basic Arithmetic

size(480, 120);
int x = 25;
int h = 20;
int y = 25;
rect(x, y, 300, h); // Top
x = x + 100;
rect(x, y + h, 300, h); // Middle
x = x - 250;
rect(x, y + h*2, 300, h); // Bottom

In code, symbols like +, –, and * are called operators. When
placed between two values, they create an expression. For
instance, 5 + 9 and 1024 – 512 are both expressions. The opera-
tors for the basic math operations are:

+ Addition

− Subtraction

* Multiplication

/ Division

= Assignment

Processing has a set of rules to define which operators take
precedence over others, meaning which calculations are made
first, second, third, and so on. These rules define the order in
which the code is run. A little knowledge about this goes a long
way toward understanding how a short line of code like this
works:

int x = 4 + 4 * 5; // Assign 24 to x

The expression 4 * 5 is evaluated first because multiplication
has the highest priority. Second, 4 is added to the product of
4 * 5 to yield 24. Last, because the assignment operator (the
equals sign) has the lowest precedence, the value 24 is assigned

Variables 39

to the variable x. This is clarified with parentheses, but the result
is the same:

int x = 4 + (4 * 5); // Assign 24 to x

If you want to force the addition to happen first, just move the
parentheses. Because parentheses have a higher precedence
than multiplication, the order is changed and the calculation is
affected:

int x = (4 + 4) * 5; // Assign 40 to x

An acronym for this order is often taught in math class:
PEMDAS, which stands for Parentheses, Exponents, Multiplica-
tion, Division, Addition, Subtraction, where parentheses have
the highest priority and subtraction the lowest. The complete
order of operations is found in Appendix C.

Some calculations are used so frequently in programming that
shortcuts have been developed; it’s always nice to save a few
keystrokes. For instance, you can add to a variable, or subtract
from it, with a single operator:

x += 10; // This is the same as x = x + 10
y -= 15; // This is the same as y = y - 15

It’s also common to add or subtract 1 from a variable, so short-
cuts exist for this as well. The ++ and −− operators do this:

x++; // This is the same as x = x + 1
y--; // This is the same as y = y - 1

More shortcuts can be found in the Processing Reference.

Repetition
As you write more programs, you’ll notice that patterns occur
when lines of code are repeated, but with slight variations. A
code structure called a for loop makes it possible to run a line of
code more than once to condense this type of repetition into
fewer lines. This makes your programs more modular and easier
to change.

40 Getting Started with Processing

Example 4-5: Do the Same Thing Over
and Over
This example has the type of pattern that can be simplified with
a for loop:

size(480, 120);
strokeWeight(8);
line(20, 40, 80, 80);
line(80, 40, 140, 80);
line(140, 40, 200, 80);
line(200, 40, 260, 80);
line(260, 40, 320, 80);
line(320, 40, 380, 80);
line(380, 40, 440, 80);

Example 4-6: Use a for Loop
The same thing can be done with a for loop, and with less code:

size(480, 120);
strokeWeight(8);
for (int i = 20; i < 400; i += 60) {
 line(i, 40, i + 60, 80);
}

The for loop is different in many ways from the code we’ve writ-
ten so far. Notice the braces, the { and } characters. The code
between the braces is called a block. This is the code that will be
repeated on each iteration of the for loop.

Inside the parentheses are three statements, separated by sem-
icolons, that work together to control how many times the code
inside the block is run. From left to right, these statements are
referred to as the initialization (init), the test, and the update:

Variables 41

for (init; test; update) {
 statements
}

The init sets the starting value, often declaring a new variable
to use within the for loop. In the earlier example, an integer
named i was declared and set to 20. The variable name i is fre-
quently used, but there’s really nothing special about it. The test
evaluates the value of this variable (here, it checks whether i
still less than 400), and the update changes the variable’s value
(adding 60 before repeating the loop). Figure 4-1 shows the
order in which they run and how they control the code state-
ments inside the block.

Figure 4-1. Flow diagram of a for loop

The test statement requires more explanation. It’s always a rela-
tional expression that compares two values with a relational
operator. In this example, the expression is “i < 400” and the
operator is the < (less than) symbol. The most common rela-
tional operators are:

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

== Equal to

!= Not equal to

42 Getting Started with Processing

The relational expression always evaluates to true or false. For
instance, the expression 5 > 3 is true. We can ask the question,
“Is five greater than three?” Because the answer is “yes,” we say
the expression is true. For the expression 5 < 3, we ask, “Is five
less than three?” Because the answer is “no,” we say the expres-
sion is false. When the evaluation is true, the code inside the
block is run, and when it’s false, the code inside the block is not
run and the for loop ends.

Example 4-7: Flex Your for Loop’s
Muscles
The ultimate power of working with a for loop is the ability to
make quick changes to the code. Because the code inside the
block is typically run multiple times, a change to the block is
magnified when the code is run. By modifying Example 4-6 on
page 41 only slightly, we can create a range of different patterns:

size(480, 120);
strokeWeight(2);
for (int i = 20; i < 400; i += 8) {
 line(i, 40, i + 60, 80);
}

Example 4-8: Fanning Out the Lines

size(480, 120);
strokeWeight(2);

Variables 43

for (int i = 20; i < 400; i += 20) {
 line(i, 0, i + i/2, 80);
}

Example 4-9: Kinking the Lines

size(480, 120);
strokeWeight(2);
for (int i = 20; i < 400; i += 20) {
 line(i, 0, i + i/2, 80);
 line(i + i/2, 80, i*1.2, 120);
}

Example 4-10: Embed One for Loop in
Another
When one for loop is embedded inside another, the number of
repetitions is multiplied. First, let’s look at a short example, and
then we’ll break it down in Example 4-11 on page 45:

size(480, 120);
background(0);
noStroke();
for (int y = 0; y <= height; y += 40) {
 for (int x = 0; x <= width; x += 40) {
 fill(255, 140);
 ellipse(x, y, 40, 40);

44 Getting Started with Processing

 }
}

Example 4-11: Rows and Columns
In this example, the for loops are adjacent, rather than one
embedded inside the other. The result shows that one for loop
is drawing a column of 4 circles and the other is drawing a row
of 13 circles:

size(480, 120);
background(0);
noStroke();
for (int y = 0; y < height+45; y += 40) {
 fill(255, 140);
 ellipse(0, y, 40, 40);
}
for (int x = 0; x < width+45; x += 40) {
 fill(255, 140);
 ellipse(x, 0, 40, 40);
}

When one of these for loops is placed inside the other, as in
Example 4-10 on page 44, the 4 repetitions of the first loop are
compounded with the 13 of the second in order to run the code
inside the embedded block 52 times (4×13 = 52).

Example 4-10 on page 44 is a good base for exploring many
types of repeating visual patterns. The following examples show
a couple of ways that it can be extended, but this is only a tiny
sample of what’s possible. In Example 4-12 on page 46, the code
draws a line from each point in the grid to the center of the
screen. In Example 4-13 on page 46, the ellipses shrink with
each new row and are moved to the right by adding the y coordi-
nate to the x coordinate.

Variables 45

Example 4-12: Pins and Lines

size(480, 120);
background(0);
fill(255);
stroke(102);
for (int y = 20; y <= height-20; y += 10) {
 for (int x = 20; x <= width-20; x += 10) {
 ellipse(x, y, 4, 4);
 // Draw a line to the center of the display
 line(x, y, 240, 60);
 }
}

Example 4-13: Halftone Dots

size(480, 120);
background(0);
for (int y = 32; y <= height; y += 8) {
 for (int x = 12; x <= width; x += 15) {
 ellipse(x + y, y, 16 - y/10.0, 16 - y/10.0);
 }
}

46 Getting Started with Processing

Robot 2: Variables

The variables introduced in this program make the code look
more difficult than Robot 1 (see “Robot 1: Draw” on page 32),
but now it’s much easier to modify, because numbers that
depend on one another are in a single location. For instance, the
neck can be drawn based on the bodyHeight variable. The group
of variables at the top of the code control the aspects of the
robot that we want to change: location, body height, and neck
height. You can see some of the range of possible variations in
the figure; from left to right, here are the values that correspond
to them:

y = 390
bodyHeight = 180
neckHeight = 40

y = 460
bodyHeight = 260
neckHeight = 95

y = 310
bodyHeight = 80
neckHeight = 10

y = 420
bodyHeight = 110
neckHeight = 140

When altering your own code to use variables instead of num-
bers, plan the changes carefully, then make the modifications in
short steps. For instance, when this program was written, each
variable was created one at a time to minimize the complexity of
the transition. After a variable was added and the code was run
to ensure it was working, the next variable was added:

Variables 47

int x = 60; // x coordinate
int y = 390; // y coordinate
int bodyHeight = 180; // Body height
int neckHeight = 40; // Neck height
int radius = 45;
int ny = y - bodyHeight - neckHeight - radius; // Neck y

size(170, 480);
strokeWeight(2);
background(0, 153, 204);
ellipseMode(RADIUS);

// Neck
stroke(255);
line(x+2, y-bodyHeight, x+2, ny);
line(x+12, y-bodyHeight, x+12, ny);
line(x+22, y-bodyHeight, x+22, ny);

// Antennae
line(x+12, ny, x-18, ny-43);
line(x+12, ny, x+42, ny-99);
line(x+12, ny, x+78, ny+15);

// Body
noStroke();
fill(255, 204, 0);
ellipse(x, y-33, 33, 33);
fill(0);
rect(x-45, y-bodyHeight, 90, bodyHeight-33);
fill(255, 204, 0);
rect(x-45, y-bodyHeight+17, 90, 6);

// Head
fill(0);
ellipse(x+12, ny, radius, radius);
fill(255);
ellipse(x+24, ny-6, 14, 14);
fill(0);
ellipse(x+24, ny-6, 3, 3);
fill(153, 204, 255);
ellipse(x, ny-8, 5, 5);
ellipse(x+30, ny-26, 4, 4);
ellipse(x+41, ny+6, 3, 3);

48 Getting Started with Processing

